Back

How AI is changing pharmaceutical market access

by PeakData

Artificial Intelligence and machine learning are making ever more sophisticated forays into healthcare and pharmaceutical R&D through applications ranging from processing medical images, unstructured EHR notes, and biosensor-equipped patient wearables to pattern-finding in synthetic control arms of clinical trials. However, beyond their usefulness in such controlled environments, little is known about how AI-powered data analytics can support pharmaceutical companies and biotech startups in their market access and commercialization efforts.

NLP as digital scout

One scenario where AI´s role in pharmaceutical innovation is still poorly understood and under-utilized is in identifying global key opinion leaders (KOLs) such as physicians, hospital pharmacists, community healthcare providers, and others on the frontlines of patient care. These professionals are crucial in accelerating adoption of new drugs and treatments in local markets, as they can impact the presentation of research in professional forums, serve as phase III clinical trial investigators, or participate in the collection of real-world data through post-marketing surveillance.

Traditionally, addressing this need has been challenging for medical affairs managers, because identifying KOLs in an ocean of unstructured data floating in different formats and languages on the internet is a Herculean task. The conventional way to approach it is through consultancies that manually reach out and conduct interviews with potential leads – a high-touch, time-consuming process whose output is often limited when compared with the resources expended and the client´s outreach ambitions. The conventional way to approach this is by having medical science liaisons or other members of the medical affairs team identify, reach out to, and network with KOLs in an effort to understand how a drug in development compares with current treatments they are using with patients or how it may be improved to make a difference and create value.

AI offers a more efficient and less personal relationship-dependent approach to identifying KOL’s: by leveraging advanced capabilities, AI professionals can develop algorithms that comb through structured and unstructured data across the web and extract relevant information from millions of websites. Mapping potential KOLs in this way has less human bias because it is agnostic to consultants’ top-of-mind roster of contacts, casts a wider net than website rankings in search results can ever do, and is scalable to a degree that is simply not feasible when using human labour.

The “magic” making this novel approach possible is recent advancements in natural language processing (NLP). NLP is a well-established field of machine learning, which has experienced vast development of late. Its functionalities allow data technologists to acquire high-resolution, per-client data by creating scripts that match predefined criteria against publicly available information. In the context of identifying KOLs for , these criteria may include target country, practice area, specialty, services offered, level of care, and even academic affiliation.  Whenever those criteria are reflected on the websites or other online materials of potential partners, the algorithm will detect it, extract the relevant details, and compile them into a client-specific database sorted by degree of relevance to the expressed criteria.

Real-time updates

Another advantage of using AI to get a comprehensive list of KOLs who can provide guidance in the late stages of pharma and biotech companies’ R&D journey is the capability to capture up-to-date contact data and replace previous versions with it. This is important when considering that KOLs who are often most worth engaging with are the ones who ascend quickly in their careers and frequently move between institutions, change affiliations, participate in multiple projects, and give keynote addresses in locations around the world. As such, their contact details may overlap or become quickly outdated, which makes them harder to identify through conventional country- or institution-based search criteria.

NLP-powered algorithms can make sense of the labyrinth of publicly available KOL details on the web and convert them into an organized, updated resource thanks to their capability to monitor petabytes of messy web data in real time. These “super powers” allow software engineers to design scripts that send out alerts as information corresponding to clients´ KOL search criteria changes, assuring that medical affairs professionals are kept abreast of key details important to their outreach efforts.

The combined challenge of manually identifying a critical mass of KOLs and accounting for unpredictable changes in their contact details is compounded further by the different languages of the web domains where these data often reside. For marketers wanting to reach local KOLs and prescribers this can be yet another hindrance since deciding whether to engage with a particular person can depend on the context in which they identify themselves online. Multilingual NLP coupled with real-time data capture and updating that can dynamically convert to English (or another preferred language) the relevant information means the AI toolbox has a solution for this too.

Post-launch engagement

Sustaining market adoption once a new drug or treatment has been approved by regulators means companies remain invested in maintaining relationships with KOLs who can speak to the effectiveness and value of their products throughout their life cycle. This is especially relevant in cases where the comparative effectiveness of therapeutic innovations – which takes into account subgroups of patients who benefit differentially from treatment with the same drug – surpasses that of established products, since physicians and other patient-facing professionals are in the best position to attest to the impact of novel drugs to heterogeneous patient populations.

For this reason, just as important as identifying currently recognized professionals is creating channels to map and connect with up-and-coming KOLs or “rising stars.” One way AI can help in this area is by automating client searches whose criteria may include progressively higher publishing frequency in scientific journals compared to the length of a young KOL´s career, the type of journals in which such publications appear, grants received, simultaneous or evolving expertise in more than one field, speaking engagements, and consulting gigs.

Regardless of the stage at which companies find themselves in their medical affairs endeavors, the opportunities afforded by proprietary AI and machine learning algorithms to dive into the ocean of publicly available big data on the web and come out with pearls of information tailored to the most demanding search criteria will increasingly mark the difference in outcomes of KOL identification and retention efforts. The sooner pharmaceutical and biotech organizations incorporate this approach into their existing strategies, the more rewarding their global and local network-building will be.

Similar articles

Strategic use of digital channels for engaging with HCPs

The Covid-19 pandemic has accentuated and accelerated important changes to how healthcare providers (HCPs) keep abreast of new product information relevant to their specialties and the patients they treat. Most notable among those is the HCPs’ embrace of digital technologies and digital-first channels of delivering content. This trend is accompanied by a growing preference for […]

Moving Towards Smarter R&D vía Decentralised Clinical Trials

Finding the right number of patients with the right characteristics is one of the biggest challenges for clinical trial sponsors. In large part this is due to the fact that randomised clinical trials – the gold standard for conducting clinical research – come with rigid inclusion and exclusion criteria, which render many potential participants ineligible […]

KOLs, POLs, and DOLs: Expanding the universe of opinion leaders

Two converging and consolidating trends – the amplification of the digital space (social media, messaging apps, microblogs, short video apps, and Q&A destinations such as Reddit and Quora) and patient-centred transformation – are driving largescale shifts in value creation in the pharmaceutical and biotech industry. As such, going digital and listening to the patient voice […]